GRADE 8

Part A

1. $10^{3}+10^{2}+10$ equals
(A) 1110
(B) 101010
(C) 111
(D) 100010010
(E) 11010

Solution

$10^{3}+10^{2}+10$
$=1000+100+10$
$=1110$
ANSWER: (A)
2. $\frac{1}{2}+\frac{1}{3}$ is equal to
(A) $\frac{2}{5}$
(B) $\frac{1}{6}$
(C) $\frac{1}{5}$
(D) $\frac{3}{2}$
(E) $\frac{5}{6}$

Solution 1
$\frac{1}{2}+\frac{1}{3}$
$=\frac{3}{6}+\frac{2}{6}$
$=\frac{5}{6}$
ANSWER: (E)
3. Which one of the following gives an odd integer?
(A) 6^{2}
(B) 23-17
(C) 9×24
(D) 9×41
(E) $96 \div 8$

Solution 1

We can calculate each of the answers directly.
(A) $6^{2}=36$
(B) $23-17=6$
(C) $9 \times 24=216$
(D) $9 \times 41=369$
(E) $96 \div 8=12$

Solution 2

If we think in terms of even and odd integers we have the following:
(A) (even)(even) $=$ even
(B) odd - odd $=$ even
(C) $($ odd $)($ even $)=$ even
(D) $($ odd $)($ odd $)=$ odd
(E) $($ even $) \div($ even $)=$ even or odd - the result must be calculated.

ANSWER: (D)
4. What is the remainder when 82460 is divided by 8 ?
(A) 0
(B) 5
(C) 4
(D) 7
(E) 2

Solution

When considering division by 8 , it is only necessary to consider division using the last 3 digits. In essence, then, we are asking for the remainder when 460 is divided by 8 .

Since $460=8 \times 57+4$, the remainder is 4 .
ANSWER: (C)
5. In the diagram, line segments meet at 90° as shown. If the short line segments are each 3 cm long, what is the area of the shape?
(A) 30
(B) 36
(C) 40
(D) 45
(E) 54

Solution

Each of the four squares are identical and each has an area of 3×3 or $9 \mathrm{~cm}^{2}$.
The total area is thus 4×9 or $36 \mathrm{~cm}^{2}$.

6. The average of $-5,-2,0,4$, and 8 is
(A) 1
(B) 0
(C) $\frac{19}{5}$
(D) $\frac{5}{4}$
(E) $\frac{9}{4}$

Solution

The average is, $\frac{(-5)+(-2)+(0)+(4)+(8)}{5}=1$.
ANSWER: (A)
7. If the sales tax rate were to increase from 7% to 7.5%, then the tax on a $\$ 1000$ item would go up by
(A) $\$ 75.00$
(B) $\$ 5.00$
(C) $\$ 0.5$
(D) $\$ 0.05$
(E) $\$ 7.50$

Solution

If the sales tax rate increases by $.5 \%$, this would represent an increase of $\$.50$ on each $\$ 100$.
Thus the increase in tax would be $(10)(\$.50)=\$ 5.00$.
ANSWER: (B)
8. Tom spent part of his morning visiting and playing with friends. The graph shows his travels. He went to his friends' houses and stopped to play if they were at home. The number of houses at which he stopped to play is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Solution

From the graph, we can see that Tom stops at two houses in his travels. Notice that his first visit to a house, illustrated by the 'triangular' shape implies that his friend was not at home.
During his other two visits, the horizontal line indicates the fact that Tom stayed.
In both instances, Tom stayed for about 30 minutes.
ANSWER: (B)
9. Andre is hiking on the paths shown in the map. He is planning to visit sites A to M in alphabetical order. He can never retrace his steps and he must proceed directly from one site to the next. What is the largest number of labelled points he can visit before going out of alphabetical order?
(A) 6
(B) 7
(C) 8
(D) 10
(E) 13

Solution

If we trace André's route we can see that he can travel to site J travelling in alphabetical order.
Once he reaches site J, it is not possible to reach K without passing through G or retracing his steps. Since J is the tenth letter in the alphabet, he can visit ten sites before going out of order.

ANSWER: (D)
10. The area of a rectangular shaped garden is $28 \mathrm{~m}^{2}$. It has a length of 7 m . Its perimeter, in metres, is
(A) 22
(B) 11
(C) 24
(D) 36
(E) 48

Solution

If the garden has a length of 7 m then its width will be 4 m .
Its perimeter is $2(4+7)=22 \mathrm{~m}$.
ANSWER: (A)

Part B

11. Which of the following numbers is an odd integer, contains the digit 5 , is divisible by 3 , and lies between 12^{2} and 13^{2} ?
(A) 105
(B) 147
(C) 156
(D) 165
(E) 175

Solution

Since $12^{2}=144$ and $13^{2}=169$, we can immediately eliminate 105 and 175 as possibilities.
Since 156 is even it can also be eliminated. The only possibilities left are 147 and 165 but since 147 does not contain a 5 it can also be eliminated. The only candidate left is 156 and it can easily be checked that it meets the requirements of the question.

ANSWER: (C)
12. If $\frac{n+1999}{2}=-1$, then the value of n is
(A) -2001
(B) -2000
(C) -1999
(D) -1997
(E) 1999

Solution

By inspection or by multiplying each side by 2 , we arrive at $n+1999=-2$ or $n=-2001$.
ANSWER: (A)
13. The expression n ! means the product of the positive integers from 1 to n. For example, $5!=1 \times 2 \times 3 \times 4 \times 5$. The value of $6!-4!$ is
(A) 2
(B) 18
(C) 30
(D) 716
(E) 696

Solution
According to the given definition, $6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$. Similarly, $4!=24$. As a result, $6!-4!=720-24=696$.

ANSWER: (E)
14. $A B C$ is an isosceles triangle in which $\angle A=92^{\circ} . C B$ is extended to a point D. What is the size of $\angle A B D$?
(A) 88°
(B) 44°
(C) 92°
(D) 136°
(E) 158°

Solution

Since $\angle A=92^{\circ}$ then $\angle A B C=\angle A C B=\frac{180^{\circ}-92^{\circ}}{2}=44^{\circ}$.
Therefore, $\angle A B D=180^{\circ}-44^{\circ}=136^{\circ}$.
ANSWER: (D)
15. The graph shown at the right indicates the time taken by five people to travel various distances. On average, which person travelled the fastest?
(A) Alison
(B) Bina
(C) Curtis
(D) Daniel
(E) Emily

Solution

We summarize the results for the five people in the table.
We recall that average speed $=\frac{\text { distance }}{\text { time }}$.

	Distance	Time (minutes)	Speed (km/min.)
Alison	1	20	$\frac{1}{20}=0.05$
Bina	1	50	$\frac{1}{50}=0.02$
Curtis	3	30	$\frac{3}{30}=\frac{1}{10}=0.1$
Daniel	5	50	$\frac{5}{50}=0.1$
Emily	5	20	$\frac{5}{20}=0.25$

Emily is the fastest.
ANSWER: (E)
16. In a set of five numbers, the average of two of the numbers is 12 and the average of the other three numbers is 7 . The average of all five numbers is
(A) $8 \frac{1}{3}$
(B) $8 \frac{1}{2}$
(C) 9
(D) $8 \frac{3}{4}$
(E) $9 \frac{1}{2}$

Solution

In order that two numbers have an average of 12, the sum of the two numbers must have been 24 . Similarly, the three numbers must have had a sum of 21.
Thus the average of the five numbers is, $\frac{21+24}{5}=9$.
ANSWER: (C)

$$
1957
$$

17. In the subtraction question, $\frac{a 9}{18 b 8}$, the sum of the digits a and b is
(A) 15
(B) 14
(C) 10
(D) 5
(E) 4

Solution 1

If we treat the question as an ordinary subtraction question we get the following:

	$\stackrel{8}{9}$		
1	9	17	
		a	9
1	8	b	8

From this, $14-a=b$ or $a+b=14$.

Solution 2

Using trial and error, we can try different possibilities for a and b.
A good starting point is the possibility that $a+b=15$ and $a=8, b=7$, for example. If we simply do the arithmetic this does not work. Of (A), (B), and (C), the only one that works is $a+b=14$.
From observation, it should be clear that if $a+b=4$ or 5 that the digits a and b would be far too small for the subtraction to work.
18. The equilateral triangle has sides of $2 x$ and $x+15$ as shown. The perimeter of the triangle is
(A) 15
(B) 30
(C) 90
(D) 45
(E) 60

Solution

Since we are told the triangle is equilateral, $2 x=x+15$, or $x=15$.
This makes the side length 30 and the perimeter 90 .
ANSWER: (C)
19. In a traffic study, a survey of 50 moving cars is done and it is found that 20% of these contain more than one person. Of the cars containing only one person, 60% of these are driven by women. Of the cars containing just one person, how many were driven by men?
(A) 10
(B) 16
(C) 20
(D) 30
(E) 40

Solution

The number of cars containing one person is 80% of 50 , which is 40 . Since 40% of these 40 cars are driven by men, the number driven by men is $.4 \times 40$ or 16 . ANSWER: (B)
20. A game is played on the board shown. In this game, a player can move three places in any direction (up, down, right or left) and then can move two places in a direction perpendicular to the first move. If a player starts at S, which position on the board (P, Q, R, T, or W) cannot be reached through any sequence of moves?

(A) P
(B) Q
(C) R
(D) T
(E) W

Solution

If S is the starting position we can reach position R immediately. From S we can also reach P and then W and Q in sequence. To reach position T, it would have to be reached from the upper right or upper left square. There is no way for us to reach these two squares unless we are allowed to move outside the large square which is not permitted.

ANSWER: (D)

Part C

21. The sum of seven consecutive positive integers is always
(A) odd
(B) a multiple of 7
(C) even
(D) a multiple of 4
(E) a multiple of 3

Solution

The easiest way to do this is to start with $1+2+3+4+5+6+7=28$. If we consider the next possibility, $2+3+4+5+6+7+8=35$, we notice that the acceptable sums are one of,
$\{28,35,42,49, \ldots\}$. Each one of these numbers is a multiple of 7.
ANSWER: (B)
22. In the diagram, $A C=C B=10 \mathrm{~m}$, where $A C$ and $C B$ are each the diameter of the small equal semi-circles. The diameter of the larger semi-circle is $A B$. In travelling from A to B, it is possible to take one of two paths. One path goes along the semi-circular arc from A to B. A second path goes along the semi-circular arcs from A to C and then along the
 semi-circular arc from C to B. The difference in the lengths of these two paths is
(A) 12π
(B) 6π
(C) 3π
(D) 2π
(E) 0

Solution

Consider the two calculations.

Calculation 1

The distance travelled here would be one-half the circumference of the circle with radius 10 .
This distance would be $\frac{1}{2}[2 \pi(10)]=10 \pi$.

Calculation 2

The distance travelled would be the equivalent to the circumference of a circle with radius 5 . The distance would be $2 \pi(5)=10 \pi$.
Since these distances are equal, their difference would be $10 \pi-10 \pi=0$.

ANSWER: (E)
23. Kalyn writes down all of the integers from 1 to 1000 that have 4 as the sum of their digits. If $\frac{a}{b}$ (in lowest terms) is the fraction of these numbers that are prime, then $a+b$ is
(A) 5
(B) 4
(C) 15
(D) 26
(E) 19

Solution

The numbers between 1 and 1000 that have 4 as the sum of their digits are 4, (13), 22, (31), 40, (103), 112, 121, 130, 202, 211, 220, 301, 310, 400.
The circled numbers are prime which means that 4 out of the 15 are prime and $a+b=19$.
ANSWER: (E)
24. Raymonde's financial institution publishes a list of service charges as shown in the table. For her first twenty five transactions, she uses Autodebit three times as often as she writes cheques. She also writes as many cheques as she makes cash withdrawals. After her twentyfifth transaction, she begins to make single transactions. What is the smallest number of transactions she needs to make so that her monthly service charges will exceed the $\$ 15.95$ 'all-in-one' fee?
(A) 29
(B) 30
(C) 27
(D) 28
(E) 31

Solution

For Raymonde's first twenty five transactions, each set of five would cost $.50+.45+3(.60)=2.75$. After 25 transactions, her total cost would be $\$ 13.75$. In order to exceed $\$ 15.95$, she would have to spend $\$ 2.20$. In order to minimize the number of transactions, she would use Autodebit four times. In total, the number of transactions would be $25+4=29$.

ANSWER: (A)
25. Four identical isosceles triangles border a square of side 6 cm , as shown. When the four triangles are folded up they meet at a point to form a pyramid with a square base. If the height of this pyramid is 4 cm , the total area of the four triangles and the square is
(A) $84 \mathrm{~cm}^{2}$
(B) $98 \mathrm{~cm}^{2}$
(C) $96 \mathrm{~cm}^{2}$
(D) $108 \mathrm{~cm}^{2}$
(E) $90 \mathrm{~cm}^{2}$

Solution

We draw in the two diagonals of the base square and label as shown. We can now say,

$$
\begin{aligned}
x^{2}+x^{2} & =36 \\
2 x^{2} & =36 \\
x^{2} & =18 \\
x & =\sqrt{18} .
\end{aligned}
$$

Note: This question would work out very nicely if we had used $\sqrt{18} \doteq 4.24$ instead of the exact form, i.e. $\sqrt{18}$.

In this part of the solution, we have drawn the completed pyramid and labelled it as shown. We draw a line perpendicular to the square base from P. By using the fact that the pyramid has a square base and its sides are equal we conclude that this perpendicular line will pass through the mid-point of diagonal $D B$ at the point M.

Using $\triangle P M B$, we can now calculate the side length, s, of the pyramid.
$s^{2}=4^{2}+(\sqrt{18})^{2} ;$ Note that $x=M B=\sqrt{18}$
$s^{2}=16+18$
$s^{2}=34$
Therefore $s=\sqrt{34}$.

If we wish to calculate the height of the side triangles, which are each isosceles, we once again draw a perpendicular from P to the mid-point of one side of the square. We use $\triangle P A B$ and label the mid-point of $A B$ point N. (Since $\triangle P A B$ is isosceles, the point N is the mid-point of $A B$.) Once again, we use pythagoras to calculate the heights of the isosceles triangles.

$$
\begin{aligned}
P B^{2} & =P N^{2}+N B^{2} \\
(\sqrt{34})^{2} & =P N^{2}+3^{2} \\
P N^{2} & =34-9 \\
P N^{2} & =25 \\
P N & =5 .
\end{aligned}
$$

We thus conclude that the height of each triangle is 5 and the area of each side triangle is $\frac{6 \times 5}{2}=15$. Thus, the total area is $4 \times 15+6 \times 6=96$.

ANSWER: (C)

